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Abstract

In coastal sediments, zones with highly active diagenesis may be situated below the
usually studied first decimeters. Pore water profiles from a backbarrier tidal flat in the
German Wadden Sea display a SO4 minimum zone associated with a distinct NH4
peak at a sediment depth of around 1.5 m. Such evidence for significant degradation of5

organic matter (OM) is challenging our understanding of tidal flat biogeochemistry as
little is known about processes that rapidly transfer reactive OM into layers far distant
from the sediment-water interface. We here test and compare two different scenarios
for OM transfer: scenario A assumes rapid sedimentation and burial of OM, scenario
B assumes lateral advection of suspended POM. A diagenetic model is adapted to de-10

scribe both hypotheses. Uncertain process parameters, in particular those connected
to OM degradation and (vertical or lateral) transport are systematically calibrated using
existing data.

We found that both scenarios, advection and sedimentation, have solutions consis-
tent with the observed pore water profiles. Constrained process parameters are within15

the range of reported values. Solutions to scenario B describing advective transport of
particulate material are, however, rather improbable due to highly specific assumptions
on the OM source and flow geometry. In the alternative deposition set-up, model simu-
lations suggest that the source OM was deposited about 60 yrs earlier (1945). A mean
sedimentation rate of approximately 2 cm yr−1 indicates substantial changes in near20

coast sediment morphology, since sea level rise is at a much lower pace. High sed-
imentation rates most probably reflect the progradation of flats within the study area.
These or similar morphodynamic features also occur in other coastal areas so that re-
gional values for OM remineralization rates may often be much higher than predicted
from surface biogeochemistry.25
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1 Introduction

Coastal sediments are critical for marine life. Anthropogenic factors such as eutrophi-
cation, coastal constructions, and accelerated sea level rise endanger the functioning
of coastal habitats as breeding areas for fish, resting areas for birds, and for water
quality restoration, with relevant impacts on neighboring ecosystems (Postma, 1983;5

De Jong et al., 1993; Lozán et al., 1994; Jentoft and McCay, 1995). Beyond, coastal
sediments have a global footprint due to intensive nutrient remineralization and the re-
lease of greenouse gases (Bange, 2006) which emphasizes the need to understand
the driving mechanisms that regulate coastal biogeochemical cycling.

Shallow coastal seas are known not only for their rapid biogeochemical cycling, but10

also for significant changes in morphology. In particular, tidal flats continuously grow
or disappear, and they may connect and disconnect laterally. However, little is known
about how morphodynamics, lateral pore water flow and biogeochemical cycles are
related. How can signals in the vertical distribution of major geochemical species like
Particulate Organic Matter (POM), ammonium (NH4) or sulphate (SO4) be indicative15

for morphological changes? Or, asked from the opposite site, to what extent is the
effective remineralization potential of coastal systems shaped by vertical changes (loss
and deposition of sediments) and horizontal subsurface transport?

Especially with respect to climate change and the inevitable rise of sea level, the
sediment budget needs to be understood in order to assess consequences of shifts20

in morphodynamic balance (Voss and van Kesteren, 2000). Here, models are impor-
tant tools to identify key processes, more completely assess collected data and predict
future trends. Inverse modeling allows to constrain parameters that can only be mea-
sured with great difficulties (Usbeck et al., 2003; Holstein and Wirtz, 2009).

In this paper, we study the origin of the unusual high reactivity at the rim of a tidal flat25

using a modelling approach. In particular, we test two hypotheses regarding the most
probable transport mechanism of labile POC in deeper tidal sediments: lateral trans-
port by advection and burial by rapid sedimentation. This way, we aim to elucidate the
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quantitative effect of both processes on the vertical distribution of major biogeochem-
ical species. Biogeochemical parameters could be constrained as well as relevant
estimates for local deposition.

1.1 The transgressive barrier island depositional system

The Wadden Sea at the southeastern edge of the North Sea covers one of the world’s5

largest tidal flat areas. Confined by a meso-tidal barrier island chain with intermittent
estuaries of major river systems, the large siliciclastic back barrier tidal flats host a
rather resilient ecosystem in the midst of a densely populated and highly industrialized
region (Hertweck, 1994; Ducrotoy and Elliott, 1997; Kock, 1998; Grimm et al., 1999).
The assembly of the modern Wadden Sea with tide-dominated barrier islands was10

induced 5000 years BP (Behre et al., 1979). During the last 1000 years coastal protec-
tion structures and land reclamation efforts stopped the transgression, establishing a
new morphodynamic balance (Flemming, 1992). Nevertheless, in the course of future
sea level rise the accretion space will narrow and the tidal flat depositional system will
ultimately disappear (Flemming and Davis Jr., 1994; Flemming and Bartholomä, 1997).15

The coastal morphology is in constant motion. Up to now, the rate of sedimen-
tation easily keeps pace with rising sea-level (recently 1–2 mm/yr) and therefore the
islands and the tidal flats accrete and migrate laterally with time maintaining hydro-
morphometric balance (Eisma, 1993; Oost and De Boer, 1994). The gradual morphol-
ogy reshape is recorded by the sediments if not eroded. While vertical seabed oscilla-20

tion may add up to more than 500 mm of sediment deposited or eroded during a year
by hydrodynamic forces (chiefly tides and storms), they are thought to be mostly event
driven, short termed and local, thus having no significant impact on the regional sed-
iment budget (Voss and van Kesteren, 2000; Tilch, 2003). In contrast, longer termed
average sedimentation rates that deviate from the mean sealevel rise and changed25

flat progradation rates indicate morphodynamic evolution of the tidal flats (Yang et al.,
2001, 2006).
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1.2 The fate of organic matter

Decay of organic matter (OM) largely differs between surface and deeper sediments.
Bioirrigating and bioturbating organisms considerably affect biogeochemical cycling
and transport in the upper 10–20 cm of the sediment (Aller and Aller, 1998; Berg et al.,
2001; D’Andrea et al., 2004; Meysman et al., 2006). Moreover, at the top sediment5

layer of the sands and muddy sands of the backbarrier area, interactions of bottom
water currents and sediment topography induce continuous flushing of the uppermost
benthic layers (Roy et al., 2002; Precht and Huettel, 2004; Cook and Roy, 2006), lead-
ing to rapid exchange of solutes (Precht and Huettel, 2003; Precht et al., 2004) and to
filtration of organic particles that are degraded on the spot (Rusch and Huettel, 2000;10

Huettel et al., 2003). Although, the actual contents of reactants may be low, high
turnover rates in surface sediments are maintained by the constant supply of reactants
and removal of metabolites (Huettel et al., 2006). Pore water advection induced by
bottom-flow-topography interaction acts down to 10 cm deep into the sediment (Huettel
et al., 1998). This flow regime, also named “skin-circulation” by Billerbeck et al. (2006),15

varies on scales of few centimetres and timescales of days in contrast to the “body-
circulation”, that is a deep-reaching flow regime with small flow velocities driven by
tidal pumping (Robinson et al., 2007; Gibbes et al., 2008). Large scale advection is a
major contributor for geochemical cycling in meso-tidal coastal sediments (Whiting and
Childers, 1989; Robinson et al., 2006) which has been specifically well documented20

for the Spiekeroog backbarrier tidal flats (Billerbeck et al., 2006; Beck et al., 2008; Roy
et al., 2008). Subterranean aquifers are sparsely investigated contributors to coastal
geochemical cyling, but may have major impact on budgets by connecting large areas
and high flow velocities (Schlüter et al., 2004).

If the stratigrafic sequence is unaffected by gravity flows or other events that may dis-25

locate significant amounts of sediment, deposits at greater depth usually are much less
reactive than surface sediments. Aged autochtonous organic material is remineralized
at notedly reduced rates (Middelburg, 1989) and lower diffusion rates within the tighter

2069

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/2065/2010/bgd-7-2065-2010-print.pdf
http://www.biogeosciences-discuss.net/7/2065/2010/bgd-7-2065-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 2065–2097, 2010

Biogeochemistry in
deeper coastal

sediments

J. M. Holstein and
K. W. Wirz

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

pore space contribute to the general decrease of turnover rates with depth. Except for
continental margin sediments, where gravity flows are a general feature (Hensen et al.,
2000; Romero and Hensen, 2002) leaving visible marks in pore water profiles (Hensen
et al., 2003), increasing OM reactivity with sediment depth has not been reported to
our knowledge.5

2 Materials and methods

2.1 Study area: sedimentary and geochemical records

Only at few places the connection between sediment-water interfaces and deeper sed-
iments has been studied. An exception is the backbarrier area of Spiekeroog Island
(Wadden Sea, southern North Sea) where a location close to the low water line at the10

northern edge of the Neuharlingersieler Nacken tidal flat (NN1: 53◦43.270 43.249′ N,
7◦43.270 43.713′ E) has been selected based on previous studies. 5 m cores were
taken three times during the years 2002–2004 (Fig. 1). 40 m southward into the
direction to the central area of the flat another core was recovered in 2005 (NN2:
53◦43.270′ N, 7◦43.270 43.718′ E). Sedimentological survey of the 5m long cores by15

Tilch (2003); Chang et al. (2006b); Wilms et al. (2006b) revealed a trisection of the
sediment column: the upper 1.7 m are composed of sands with intersections of silts
(intertidal flat and channel deposits) followed by an approx. 0.7 m thick shell beds with
massive sand interbedding (shell lag deposits). Organic carbon contents of the sand
and shell layers is 0.3% on average, but may reach up to 1.2% in the silty layers. The20

base consists of greyish muds (saltmarsh and mudflat deposits) containing 1.2% POC
on average. Sulfate depletion between 1 and 2 m depth at site NN1 is accompanied by
a clear NH4 peak, which both indicates rapid decay of OM (Wilms et al. (2007); Beck
et al. (2009) Fig. 2). The sulfate and ammonium signals cannot be directly related to
TOC-rich layers in the sediment. TOC peaks at 1.0 m and 1.5 m are both accompanied25

with increased fine (< 63 µm) lithoclastic material, which indicates that TOC measure-
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ments are less suited to identify active layers since fresh OM is may be obscured
by refractory OM. High concentrations of acetate at 1.5 m, with 2.2 mmol/l making up
nearly 50% of the DOC fraction, indicate active fermenting processes. Additionally, the
∆13C isotope ratio is elevated here (J. Köster, personal communication, 2008). Micro-
bial investigations by Köpke et al. (2005) and Wilms et al. (2006a) found significantly5

enhanced activity at the edges of the sulfate free, methanogenic, zone. Though less
pronounced, ongoing diagenesis is also visible at site NN2 in the sulfate profile – NH4
was not measured.

2.2 Modelling approach

Which process is able to fuel rapid OM remineralisation in deeper coastal sediments?10

Since age and reactivity of OM are well correlated (Middelburg, 1989), the question we
need to answer is how fast OM has been relocated and by what transport mechanism.
We here test two plausible scenarios, conceptualized in Fig. 3, of either sedimentation
(scenario A) or advection (scenario B) being suitable for supplying labile OM to deeper
sediment layers. In scenario A, OM of high or intermediate quality is deposited at the15

surface and transferred to depth by rapid sedimentation in order to compensate sed-
iment deficits supposably created by ramp propagation into the channel. In scenario
B we assume a subterranean aquifer or advective zone in 1–2 m sediment depth that
connects site NN2 to NN1 and transports intermediate OM from a hypothetical source
upstream of NN2 to the study sites.20

Both scenarios are represented as specific set-ups of the Integrated Sediment Model
(ISM) (Wirtz, 2003; Holstein and Wirtz, 2009). For the model calibration in scenario A,
we employ a Monte-Carlo parameter variation. From 84 model parameters 9 most crit-
ical parameters were chosen based on an extensive sensitivity study carried out by
(Holstein and Wirtz, 2009). We obtain a standard calibration with minimal relative root25

mean squared error (relative RMSE) of SO4 and NH4 pore water profiles which also
serves as base calibration for scenario B. This set-up is also implemented as a 1-D
(one dimensional) vertical column (Fig. 4a). Horizontal advection is assessed by in-
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terpreting the geochemical transformation of the waterbody through time as a change
through space along the advective (horizontal) flow-path, i.e., the reference system
moves along with the water. This approach is justified if (i) the reaction rates are slow
compared to the flow velocity so that horizontal concentration gradients are negligible
compared to vertical gradients, and (ii) the sediment composition in terms of physic-5

ochemical properties is consistent along a horizontal flowpath. Both conditions are
supposedly met. Additionally, a 2-D simulation with coarse spatial resolution was used
to verify the results of the 1-D advective model setup. The intermediate POC decay
constant served as the sole master variable. Advective flow velocities are calculated
from the distance between NN1 and NN2 and the times needed by the SO4 pore water10

profile to develop from the initial state via NN2 to a state found at NN1.

2.3 Model structure

The ISM simulates transport and reactions of chemical species in porous media, par-
ticularly resolving carbon degradation. Specific to the ISM compared to many other
diagenetic models (e.g., Berner, 1980; Boudreau, 1997) is that most redox reactions15

are carried out by competing microbial populations (defined according to their catabolic
pathways). The decay of OM is calculated for different quality classes, differentiatiating
between enzymatically enhanced hydrolization and quality related consumption of OM
by heterotrophic bacteria. A sketch of the biochemical cycling scheme is depicted in
Fig. 5. For a comprehensive description of the gouverning equations, the reader is20

referred to Holstein and Wirtz (2009). In this study, the model consists of a column of
50 boxes, each 10 cm thick, representing the sediment column from sediment surface
to 5 m depth. In brief, the boxes consider the following processes and geochemical re-
actions: diffusive transport affects all aqueous species within the model area and also
leads to import of solutes through the upper boundary during times of water coverage.25

The upper boundary represents the bottom water overlying the sediment and nutrient
concentrations are set to monthly means of measurements of Liebezeit et al. (1996).
For oxygen and sulfate, constant concentrations of 0.25 and 24.0 mmol/l respectively
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are assumed.
Bioturbation is implemented as diffusion acting on both solutes and solids. Bioirri-

gation is implemented as non-local exchange. Both rates decrease exponentially with
depth to 5% of the full value at biomixing depth. Below, there is no mixing.

Hydrolysis of POC is assumed to depend on the reactive area of particulate material,
which is assumed to scale with volumetric concentration with exponent 2/3

∂
∂t

POCj =−1−φ
φ

rj Q
(T−TS)/10
10 POC

2/3
j (1+h BAC) (1)

where the index j denotes the quality class, φ the porosity, h quantifies enzymatic en-5

hancement of hydrolysis, BAC the active bacterial biomass (weighed by the functional
group specific growth rates). The model includes the nonlinear Q10 temperature term
after van’t Hoff rule. T and TS denote ambient and standard temperature. Referring to
Boudreau (1992), POC is divided in 3 quality classes that differ in their specific rate con-
stant rj (1/d ) and their Redfield composition according to which NH4 is released into10

the porewater upon POC destruction. Carbon from hydrolized POC is re-distributed
among 3 DOC pools such that the highest quality POC class will also contribute most
to the highest quality DOC class. POC class 3 is refractory and, in the model initial-
ization, mainly confined to the gray mud layers below 2.5 m (Fig. 2) in concentrations
of approximately 1.25% of bulk dry sediment. POC class 2 collects intermediate ma-15

terial. In scenario A, it is deposited at the top box with 2.5% dry mass concentration
at simulation start, and is incorporated in the sediment body throughout subsequent
sedimentation. In scenario B, a 30 cm thick layer (i.e. 3 boxes) around 1.5 m sediment
depth was primed with 1.0% intermediate POC. POC class 1 is highly reactive and
small contents are therefore confined to the uppermost layer. The composition of sus-20

pended particular matter in the overlying bottom water in terms of quality classes is
assumed 1:5:200 (POC class 1:2:3).

Redox reactions comprise the primary reactions for OM degradation according to
Froelich et al. (1979), denitrification and secondary redox reactions. These alltogether
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20 reactions are mediated by bacteria. Additionally, monosulfide precipitation and re-
oxidation and pyrite formation are thermodynamically controlled (Holstein and Wirtz,
2009).

Sedimentation (only scenario A) is implemented as a discontinuous process. At a
supposed sedimentation rate of, e.g., 1 cm/yr, all boxes are shifted to the next deeper5

layer every 10 years. Contents of the lowest model box are lost and the uppermost box
is filled with sediment and pore water according to surface conditions. Discontinuous
deposition avoids numerical diffusion of solid species and prevents the loss of OM
stratification and sediment characteristics. Compared to continuous sedimentation, we
postulate a better reproduction of the sedimentation regime in the Wadden Sea where10

times of sediment deposition and resuspension vary on a daily, seasonal and annual
scale (Chang et al., 2006a).

2.4 Parameters of interest

The extensive parameter variation approach is excellently suited to constrain parame-
ters, provided parameters converge towards a value and the variation range was sensi-15

bly chosen. A total of approximately 34 000 simulations were run with randomly varied
parameter values within reasonable limits as given in Table 1 to obtain the standard
calibration for scenario A. The variation range for porosity was derived from mud con-
tent (< 63 µm), since a significant relation exists between pore space and mud content
(Flemming and Delafontaine, 2000). Bioturbation is highly variable and uncertain, so20

we used values from Tromp et al. (1995) for high to low sedimentation rate settings. The
decay constant of the POC fraction of interest (intermediate quality) was varied within
values just as high as the highly reactive fraction, which is short-lived and therefore
exists only in the surface sediment, and just as low as the poorly reactive, refractory
fraction. NH4 concentrations, specifically the extent of the peak value at 1.5 m sedi-25

ment depth is very sensitive to the C:N ratio of the decomposing OM which was varied
within limits typical for that area (Beck et al., 2008, and references therein). The bac-
terial yield on SO4 controls the growth of the sulfate reducers. It’s value is relative to
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the yield on O2 which is 1. Since the understanding of the reactivity of OM as well as
metabolic constraints is fragmentary, bacterial metabolic efficiency may vary and the
bacterial yield may significantly differ from the Gibbs free energy of the related reac-
tion (Jørgensen, 1978; Berner, 1980). Introducing OM fractions of different reactivity
and the acceleration of the hydrolization by the bacteria themselves is a step towards5

a more complete description (Rothman and Forney, 2007). Still, our simplified imple-
mentation of hydrolization is not verified and therefore a large spectrum of values are
considered.

3 Results and discussion

In both scenarios, model runs with the calibrated parameter set are able to produce10

accurately fitting SO4, NH4 and DOC pore water profiles for core NN1 as shown in
Fig. 6. Calibrated parameters with an average relative standard deviation (%RSD) of
less than 5% for SO4 and NH4 converge towards values given in Table 1. This model
calibration for scenario A served as the base calibration for scenario B.

3.1 Scenario A – rapid sedimentation15

Given the very good reproduction of the pore water data, and the convergence of well
fitting parameter values, the inverse modeling of the sulfate and ammonium profiles
yields a robust estimate of recent sedimentation rates. Best model runs in terms of
relative RMSE for SO4 and NH4 assume sedimentation rates of 1–4 cm yr−1. The top
140 cm of sandy intertidal flat and channel deposits most likely formed during the last20

35–140 yrs.
For the simulation with standard calibration as given in Table 1, the decay of inter-

mediate quality OM at 8×10−5 d−1 (corresponding to a halflife of 24 yrs) provides the
DOM used by sulfate reducers. Numerically, this can explain the developing sulfate
gap in 1–2 m within 64 years. Weaker constraints regarding the sedimentation rate25
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follow from the ammonium profile fitting, but at rates below 1 cm yr−1 the model error
drastically increases. Hence, the sandy flat and channel deposits, which make up the
upper section of the cores, must have been deposited at rates significantly higher than
required just to keep up with sea level rise. The relative RMSEs of DOC and TOC (not
shown) are largely insensitive to the sedimentation rate.5

The best 145 model calibrations (composite SO4 and NH4 relative RMSE <5%) rep-
resent the uncertainty of the calibrated values as well as the partial overlap of pa-
rameter functions. In general, parameters are less constrained than in a comparable
study by Beck et al. (2009) which was expected because we vary more parameters
here. The POC decay constant, the yield on SO4 and the specific enhancement of10

hydrolytic exoenzymes all affect the speed in which sulfate reducers degrade the or-
ganic matter. Due to a similarly accelerating effect these highly important parameters
for OM degradation (Holstein and Wirtz, 2009) were only moderately constrained and
best calibrations have relative standard deviations of 15–37%.

In contrast, porosity changes produce a rather unequivocal response, demonstrating15

the prominent role of sediment transport characteristics for the model results. Best
fitting porosity of the deposited sediment was estimated to be 0.46 which is in good
agreement with a range of 0.37–0.43 calculated from mud content by Flemming and
Delafontaine (2000) for East Frisian Wadden Sea intertidal surface sediments.

The calibrated bioturbation coefficient accurately fits estimates for coastal systems20

with reported sedimentation rates of few cm yr−1 (Tromp et al., 1995, and references
therein). Bioirrigation coefficients from literature are also remarkably close to our esti-
mates. However, a bioturbation/-irrigation depth of 54 cm is found to be most compati-
ble with the observed convex or kink shape of the sulfate profile. This estimate clearly
exceeds the usually reported values of 10–30 cm for bioturbation (Furukawa et al.,25

2000; Meile et al., 2001) and of 10–20 cm for bioirrigation (Boudreau, 1994, 1998;
Sandnes et al., 2000; Crusius et al., 2004). The latter is the accepted burrow death of
the lugworm Arenicola marina, the most common burrowing macrofauna species of the
study area, and Heteromastus filiformis . However, bioturbation may reach as deep as
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0.5 m in sediments overlying high-productivity areas (Wetzel, 1981) and some species
(Callianassa subterranean and Maxmuelleria lankesteri, though undocumented in the
investigated habitat, are known to have burrows reaching such depth (Koretsky et al.,
2002). Another explanation for kink shape pore water profiles, previously pointed out
by Hensen et al. (2003), is that sedimentation of the upper 0.5 m happened faster than5

relaxation of the concentration gradient. This scenario would require deposition during
one or few events, which is in line with the sedimentation pattern proposed by Chang
et al. (2006b) and explains the absence of bioturbation structures.

A Redfield ratio of C:N of 9.5 is able to explain the height of the ammonium peak
around 6 mmol l−1 and the bell shape of the ammonium pore water profile. This cali-10

brated value exceeds the standard Redfield C:N ratio of 6.6. But it is in the stoichiomet-
ric range of suspended particular organic matter (SPOM) in the open water column of
the study area (around 7.8; Lunau et al., 2006) and comparable to an integrated value
of 8.6 for the upper 3 m of sediment on a neighboring flat by Beck et al. (2008).

A (relative) bacterial yield of sulfate reducers on DOC of 0.08 means that sulfate re-15

ducers yield 8% the energy oxic heterotrophs would gain from a unit of DOC converted
into growth. If just the Gibbs free energies of the corresponding reactions after Froelich
et al. (1979) are considered, the yield of sulfate reducers should be around 0.12. Given
the relatively high relative standard deviation of 28%, the calibrated value seems rea-
sonable since reported bacterial growth efficiencies show a wide scatter (Payne and20

Wiebe, 1978; Russell and Cook, 1995).
In scenario A, the sulfate profile is reproduced best, while the peak in the ammonium

profile could not be reproduced to the same extent. The initialized OM pulse is presum-
ably too broad to generate such a distinct peak. In the model, the DOC peak between
1.5 and 2.0 m depth consists of intermediate DOC, which is situated above a layer of25

refractory compounds. This peak is narrower than empirical data suggest but broader
than the distinct acetate peak at this site (not shown). It can hence be speculated that
some of the DOC is refractory. The observed total organic carbon (TOC) profile is sat-
isfactorily reproduced. An exception is the simulated soft peak in intermediate quality
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TOC below 1.5 m depth where the field data display a more complex picture with higher
values at 1.0 and 1.5 m.

3.2 Scenario B – advection

Reasonable model-data fits were also found for scenario B. This is not surprising since
both scenarios differ only in the mechanism which is used to transfer OM to depth.5

In both scenarios OM is subject to the same array of processes, with comparable
results regarding degradation and pore water evolution. For core NN2, which is not
used for the model calibration of scenario A, the sulfate fit is less satisfying due to the
fact that the whole profile, including the sulfate minimum and the sulfate bulge below,
is slightly elevated with respect to the core NN1 profile. Model error for sulfate and10

ammonium of core NN2 and NN1 become minimal at a degradation rate of 0.7×10−4

d−1 (Fig. 8a). According to timing and geometry, this corresponds to a macroscopic flow
velocity of 1.4 myr−1 (Fig. 8b). Assuming invariant aquifer dimensions and conditions,
the OM source is then located 6 m upstream of core NN2 (Fig. 8c). That way, it takes
approximately 10 years for the sulfate profile to develop the shape observed at core15

NN2 and another 60 years to develop the shape observed at core NN1 as depicted in
Fig. 9.

At degradation rates below 0.5×10−4 d−1, sulfate reduction is too weak to produce a
sulfate-free zone, which is reflected by increasing relative RMSE for core NN1 sulfate
fits. At rates above 1.0×10−4 d−1, the OM source moves close to NN2, so that it can20

not be located at the surface anymore. In this case advection must be discarded as the
process to relocate OM from surface to depth.

However, DOC pore water profiles of cores NN1 and NN2 document that the dis-
solved compound alone cannot be responsible for the observed sulfate reduction.
Concentrations are simply not high enough and do not change from core NN2 to25

NN1. Therefore the supplied carbon has to arrive as suspended particles (that ex-
ceed 1.2 µm, which was the filter size for pore water extraction by Beck et al., 2009).
Retention of POM has not been considered in the model calculations. It would slow
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down carbon transport, delaying pore water evolution and, as a result, further decrease
the distance from core NN1 to the hypothetical carbon source. Though the existence
of an aquifer cannot be excluded from the investigations, the heavily curved flowpaths
required for this scenario point to tidal pumping as the driving force for underground
water flow. Macroscopic flow velocities projected by Wilson and Gardner (2006); Roy5

et al. (2008) are compatible with our model derived estimates.
The hypothesis yet appears implausible, since the geometric premises required for

scenario B are highly specific and too contrived to sustain a reasonable probability at
this site. Since tidal pumping affects the whole sediment body, advection would not be
restricted to a certain layer unless obstructed by sediment properties for which there is10

no lithologic evidence. In case of unhindered flow, the carbon source needs to be very
confined, ruling out water column SPOM as carbon source. For example, a macroalgae
agglomerate buried in the surface sediment few meters upstream of core NN2 might
create a confined SPOM plume to match observations. Given the constant reworking
of the surface sediment by hydrodynamic forces, the carbon source is not likely to stay15

put for at least 60 yrs to cause effect at both sites NN2 and NN1.

4 Conclusions

We compared the two most probable processes for the rapid transfer of reactive OM
into deeper sediment layers. Both sedimentation and advection could in general explain
the observed pore water profiles of SO4, NH4, DOC and TOC.20

However, discrepancies regarding requirements and observations of carbon source
and flow geometry make the advection hypothesis rather improbable. But provided
higher flow velocities, pore water advection principally may relocate reactive organic
matter over much longer distances and deep into the sediment.

The sedimentation hypothesis implies the rapid compensation of a great sediment25

deficit, e.g., tidal flat progradation. Inversely modeled sedimentation and progradation
rates are in the range of observations. The estimates for the Redfield ratio and the

2079

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/2065/2010/bgd-7-2065-2010-print.pdf
http://www.biogeosciences-discuss.net/7/2065/2010/bgd-7-2065-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 2065–2097, 2010

Biogeochemistry in
deeper coastal

sediments

J. M. Holstein and
K. W. Wirz

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

decay rate of the OM organic matter that was initially deposited in the surface sedi-
ment suggests that the POM composition was typical for the area, which is moderately
nitrogen depleted and of intermediate reactivity.

Therefore, we suggest scenario A to be more probable. In morphodynamically very
active areas like many coastal systems, this would have consequences for the bio-5

geochemical fingerprint of the entire sediment body. If layers of high OM content be-
come buried within few decades, estimates of, e.g., organic preservation efficiency,
methane production, or nutrient remineralization will be much higher than extrapolated
from studies of the surface layer or distant deeper sediments. In particular methane
emissions from coastal areas will thus be higher than projected estimates that do not10

take into account larger amounts of buried but still relatively fresh OM in greater depth.
Sedimentation rates of a few cm yr−1 over decades signal morphologic change. The
assumed tidal flat progradation, as a manifestation of morphodynamics, is in accor-
dance with nautical charts of the years 1866–2003 for our study area Tilch (2003).
While most of the northern and northeastern parts of the tidal flats that form the south-15

ern and southwestern bank of the main tidal channel (Neuharlingersieler Nacken and
Janssand) suffer from erosion following the general trend towards higher energies, the
study area receives sediment. For 2 m of young sediment to deposit, it would require
a flat progradation of a little less than 1 m/y into the channel at an inclination of 2.3◦of
tidal flat surface plane during 60 years. Since great channels may laterally relocate 2520

to 30 m/y on average according to Lüders (1934) it seems a conceivable hypothesis.
We demontrated that models can be indispensable for a sound interpretation of bio-

geochemical data. By using automated model calibration, we were in particular able
to infer the average sedimentation rate during the last decades. On this timescale,
sedimentation rates are rarely estimated for marine environments. Morphodynamic25

changes like flat progradation are not restricted to the study site. We therefore sug-
gest that at many shallow coasts OM turnover (connected with significant production of
CO2, N2O or CH4) will be more intense than apparent from surface-restricted studies.
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Table 1. Parameter ranges for Monte Carlo parameter variation, standard calibration (Fig. 6),
and relative standard deviation (%RSD) of parameters from 145 calibrations with average
%RSD<5% with respect to SO4 and NH4 (Fig. 7).

Variation Standard
Parameter whiteIntermediate POC decay constant perday range calibration %RSD

Porosity 0.4–0.6 0.47 8
Sedimentation rate (cm yr−1) 0.1–10 2.2 30
Bioturbation coefficient (cm2day−1) 0–3 0.1 31
Bioirrigation coefficient (d−1) 0–50 0.6 29
Biomixing depth (cm) 0–100 45 34
Intermediate POC decay constant (× 10−4 d−1) 0.1–5.0 0.8 37
C/N ratio of intermediate POC 3–15 9.5 14
Sulfate reducer yield on DOC 0.05–0.15 0.08 28
Effect of hydrolytic exoenzymes 1–100 21.5 15
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located at the northern rim of an intertidal sand flat (Neuharlingersieler Nacken).
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Fig. 2. Lithology and geochemical inventory at the study site. The N-S oriented transect
covers 40 m at the nothern rim of the Neuharlingersieler Nacken tidal flat. Facies association
according to Chang et al. (2006b): sandy intertidal flat and channel deposits (yellow), shell lag
deposits (orange), and saltmarsh/mudflat deposits (gray). Pore water data of of DOC (green),
SO4 (blue), and NH4 (red) show sulfate depletion between 1 and 2 m depth accompanied by a
NH4 peak (NN1). Core NN1 shows pore water data from 2005 (one of three parallel cores).

2090

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/2065/2010/bgd-7-2065-2010-print.pdf
http://www.biogeosciences-discuss.net/7/2065/2010/bgd-7-2065-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 2065–2097, 2010

Biogeochemistry in
deeper coastal

sediments

J. M. Holstein and
K. W. Wirz

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

core NN1core NN2

tidal
range

tidal flat channel

labile POM

layer rich in

flat progradation

bedding planes

A

?

advective
layer

core NN2 core NN1

40 m

tidal
range

tidal flat channelB

Fig. 3. Alternative scenarios to explain fast OM degradation in deep sediment. (A) Scenario
A: rapid sedimentation transfers POM to greater depth that was previously deposited at the
surface. (B) Scenario B: an advective zone or subterranean aquifer in 1–2 m sediment depth
connects core NN2 and core NN1 to a hypothetical SPOM source upstream of core NN2.
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Fig. 6. Scenario A: model results for sulfate, ammonium, DOC and TOC for a sedimentation
rate of 2.2 cm/y after 44 years. Error bars (red) indicate standard deviation of three parallel
cores. Similar fits are obtained with scenario B.
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Fig. 7. Model error in a Monte Carlo parameter variation, projected to the effect of variations in
the sedimentation rate. The dots shows the relative root mean squared error (relative RMSE)
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black square denotes the best fitting run (standard calibration) given in Table 1 and shown in
Fig. 6.
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Fig. 8. Flow parameters of scenario B and their relation to intermediate POC decay constant.
(a) Age of pore water at core NN2 and NN1 according to pore water sulfate evolution. Relative
root mean square errors (relative RMSE) of a particular best fit are indicated by color. Minimal
relative RMSE is attained at 0.7×10−4 d−1 (dashed line). (b) Macroscopic flow velocity required
to cover the distance of 40 m between core NN2 and NN1 in the length of time between the
best fits of sulfate pore water profiles at respective locations. (c) Distance of core NN2 to the
hypothetical source of OM.
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